Results 1 to 4 of 4
  1. #1
    tcw's Avatar
    tcw
    tcw is offline Senior Member
    Join Date
    Sep 2005
    Posts
    1,384

    "Half Life & Activity....."

    CORRECT ME IF I AM WRONG!

    QUESTION 1
    According to AR info..."Cypinate" has an active life of 14-16 days....meaning it is in your system FOR 14-16 days. Likewise, "Propinate" is active for 2-3 days (both affected by the coresponding esther). DOES THIS MEAN that Cypinate will not reach full strength until 14 days after injection? Likewise...will Propinate not reach full strenght until 2 days after injection?

    QUESTION 2
    If so...doesnt' "Cypinate" (and other AAS in its class) carry a higher associated risk because any side will be felt up to 14 days after injection?

    QUESTION 3
    If 2 is true....why would anyone inject a longer acting ASS?



    thnks in advance...for your constructive input!
    Last edited by tcw; 12-21-2005 at 08:38 AM.

  2. #2
    johnsiegal is offline Junior Member
    Join Date
    Dec 2005
    Posts
    54
    Good Question...i was considering Cypinate versus Propinate for my first cycle. Been reading alot about shorter cycles over longer ones and it seems the risk associated with longer cycles is much greater.

  3. #3
    G-1000's Avatar
    G-1000 is offline Cycle King/AR-Hall of Famer/RETIRED
    Join Date
    Nov 2004
    Posts
    14,421
    Blog Entries
    1
    Understanding Drug Half-Lives - by William Llewellyn


    There are a number of factors that can affect the potency of a particular drug compound. One such factor, and perhaps one of the most important, is the half-life of the agent. In medicine, the term half-life refers to the duration it takes for half of a given drug dosage to break down in the body. It is not half of the total activity time, as this figure always refers to the time it takes to metabolize 50% of what is in still the body. For example, if we inject 100mg a steroid with a half-life of 4 hours, at the four-hour mark we should have only 50mg left as active. After another four hours have passed the drug is still in the body, however another half-life has expired and the total active dosage will be around 25mg. It may take several half-lives before the drug is completely inactive.
    A good way to illustrate half-life is through the "flipping penny" experiment. I remember it well from my high school earth sciences class, and I'm sure many of you have probably done this exercise as well. This experiment involves placing 100 pennies inside a flat, closeable box. It is big enough that the pennies can sit side by side comfortably without overlapping each other. We begin with them all facing "heads-up". Next we close the box, give it a good shake, and then open it back up again. We then proceed to remove all pennies that are now "tails-up" in the box. This process is repeated until all of the pennies have been flipped and are removed from the box. We find that with each shake we loose about half of them. Around 50 the first flip, 25 the second, a dozen of so on the third, and so on. Although half of the original amount are tailed and removed on the first flip, it takes many successive tries to clear them all. And usually there are a couple of kids in the class that just can't seem to get the last few over without a lot of work. This illustrates well the way in which we measure drug metabolism in the body. Half-life is not an easy reference for the total time a drug will be found active in the body, but more a guide to optimizing a dosing schedule and avoiding unwanted peaks and troughs.

    Unaided Steroid Half-Life

    In the early years of steroid research, half-life was one of the biggest roadblocks to the development of commercial compounds. Natural steroid hormones have very short half-lives, which can make maintaining a normal blood level very difficult. For example, the half-life of free testosterone in the blood is only a few minutes (1), and from the site of injection it is well short of one hour. It is also so easily processed by the liver, that when you take it orally only a tiny fraction will actually be intact by the time it reaches the blood. With the oral route too difficult, repeated regular injections would probably be the only option to use testosterone for therapy at all. Obviously this is extremely tedious and uncomfortable to do, which led scientists to focus closely on ways to extend the life of this and other hormones in the body. Lets take a close look at the two most popular methods that were developed and ultimately adopted by the pharmaceutical industry for extending steroid half-life.

    Oral 17alpha alkylation

    You have most lively seen this reference in steroid materials. 17alpha alkylation is a process in which an extra carbon atom is added to the steroid molecule at the 17th position. This atom occupies a bond needed for the steroid to reduce to inactive 17-keto form, totally inhibiting this pathway of metabolism (2). The addition of 17 alkylation works to extend the half-life of the steroid considerably. With it we present we have half-lives measured in hours instead of only minutes. Unfortunately 17alpha alkylation also can lessen the ability of the steroid to bind to the androgen receptor. But the two traits balance out such that typically we still have a more physiologically active steroid molecule though (3). This alteration is the most favorable for oral dosing. Since the liver cannot process this type of steroid well, a large percentage will make it to the blood stream intact. It however is also somewhat toxic to the liver, and therefore less than ideal, especially if we are considering another avenue of administration such as injection.

    Esterification for Injection

    Most injectable steroid compounds utilize esters to increase their half-lives in the body. Esterification is a process where a carboxylic (fatty) acid is attached to the steroid molecule at the 17th beta position. One purpose of this is to protect its active 17-hydroxyl group. It is a prime target of steroid metabolism, and with the ester present this is prevented. The ester also makes the steroid compound more oil soluble. This makes it more difficult for the blood to pick it up and carry it into circulation, and likewise slows the rate the drug can leave the injection site. As a result, an inactive deposit of steroid can sit at the site of injection, releasing slowly for days or weeks into the blood stream. Once free in the blood the ester is removed quickly by enzymes, and the base steroid is rendered active.

    We can look at the half-life of injectable compounds in two ways. The first is the half-life for the release of the steroid from the injection site. This is usually measured in days with most commercial steroid preparations. In fact the total active lifespan of most oil-based esterified injectables is measured in weeks, sometimes several weeks. The second measure is to look at its half-life in open blood circulation. This is more a figure for personal interest sake than any practical application however, as the only relevant measure to the user is its release half-life. In any event, we can look at a human injection study with nandrolone decanoate (Deca ) and see some pretty accurate figures on both measures (4). First we find that Deca exhibits a mean half-life of 6 days for the release of steroid from the injection site. You can see why people say that Deca can technically be active for as long as a month after injection. Next we find a half-live of about 4 hours for the hydrolysis of serum nandrolone decanoate to free nandrolone, and the total distribution and metabolism of nandrolone. The half-life for simply the removal of the decanoate ester was about an hour or less. Provided in the chart below as well are the relative half-lives of nandrolone and two other esters of it from intramuscular injection depot (5).

    Compound Half-Life

    Nandrolone 30-40 minutes
    Nandrolone phenylpropionate 1 day
    Nandrolone decanoate 6 days
    Nandrolone laurate 10 Days

  4. #4
    tcw's Avatar
    tcw
    tcw is offline Senior Member
    Join Date
    Sep 2005
    Posts
    1,384

    Smile

    [QUOTE=gsxxr]Understanding Drug Half-Lives - by William Llewellyn




    thnks for the article "g"

Thread Information

Users Browsing this Thread

There are currently 1 users browsing this thread. (0 members and 1 guests)

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •