IRON DEFICIENCY AND THERMOREGULATION
The following studies offer evidence that the inability to maintain body temperature (feeling cold when others are warm) is due to iron deficiency. Most hypos experience this, indicating that iron deficiency is usually a factor in hypothyroidism.
IRON DEFICIENCY AND SUPPLEMENTATION IMPACT THERMOREGULATION AND BROWN ADIPOSE TISSUE (BAT) MITOCHONDRIAL MORPHOLOGY OF RATS EXPOSED TO COLD
Author(s):
MICHELSEN KIM G HALL CLINTON B NEWMAN JR SAMUEL M DROKE ELIZABETH A SLEEPER MARY E LUKASKI HENRY C
Interpretive Summary:
The role that iron (Fe) plays in regulating whole-body temperature is not well defined. Fe-deficient rats have reduced concentrations of thyroid hormones and altered body temperature. Because thyroid hormones act at the mitochondria level of brown adipose tissue to produce heat, Fe status may affect the structural characteristics of mitochondria, a cell component that produces energy to maintain body temperature. To examine the relationships among dietary iron, body temperature, thyroid hormones, and brown adipose tissue mitochondria, young male rats were fed diets containing adequate or deficient amounts of Fe. Some of the rats fed the low-Fe diets then were given the diet containing an adequate amount of Fe. When exposed to cold air for four hours, the rats fed the Fe-deficient diet had a greater decline in body temperature than the rats fed the Fe- adequate diet. The rats initially fed the Fe-deficient diet then fed the Fe-adequate diet had similar body temperatures as the animals fed the Fe- adequate diet. Plasma thyroid hormone concentrations were less in the rats fed the Fe-deficient, as compared to the Fe-adequate and Fe-deficient supplemented with adequate Fe diets. The structure of mitochondria suggests that Fe deficiency produced changes that indicate impaired heat production; this change was ameliorated with Fe supplementation. These findings indicate that Fe deficiency reduces the capability of rats to maintain body temperature during short-term cold exposure. Biological impairments of Fe deficiency lie in the production of adequate amounts of thyroid hormones and adverse changes in the mitochondria that inhibit the production of heat. This information will be useful to scientists who seek to understand how mineral elements regulate energy utilization.