Low-fat diet alters intramuscular substrates and reduces lipolysis and fat oxidation during exercise.
Coyle EF, Jeukendrup AE, Oseto MC, Hodgkinson BJ, Zderic TW.
Human Performance Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX 78712, USA.
[email protected]as/edu
We determined whether a low-fat diet reduces intramuscular triglyceride (IMTG) concentration, whole body lipolyis, total fat oxidation, and calculated nonplasma fatty acid (FA) oxidation during exercise. Seven endurance-trained cyclists were studied over a 3-wk period during which time they exercised 2 h/day at 70% of maximum O2 uptake VO(2 max) and consumed approximately 4,400 kcal/day. During the 1st wk, their fat intake provided 32% of energy. During the 2nd and 3rd wk, they were randomly assigned to eat 2 or 22% of energy from fat (2%FAT or 22%FAT). Compared with 22%FAT, 2%FAT lowered IMTG concentration and raised muscle glycogen concentration at rest (P < 0.05). Metabolism was studied during 1 h of exercise at 67% VO(2 max) performed in the fasted state. 2%FAT resulted in a 27% reduction (P < 0.05) in total fat oxidation vs. 22%FAT without altering the stable isotopically determined rates of plasma free fatty acid or glucose disappearance. Therefore, 2%FAT reduced calculated nonplasma FA oxidation by 40% in association with a 19% reduction in whole body lipolysis while increasing calculated minimal muscle glycogen oxidation compared with 22%FAT (all P < 0.05). In summary, an extremely low fat (2% of energy) and high-carbohydrate diet lowers whole body lipolysis, total fat oxidation, and nonplasma FA oxidation during exercise in the fasted state in association with a reduced concentration of intramuscular triglyceride.
Publication Types:
Clinical Trial
Randomized Controlled Trial
PMID: 11171592 [PubMed - indexed for MEDLINE]