1: J Nutr Biochem. 2008 Aug 15. [Epub ahead of print]
Liu TH, Wu CL, Chiang CW, Lo YW, Tseng HF, Chang CK.
No effect of short-term arginine supplementation on nitric oxide production, metabolism and performance in intermittent exercise in athletes.
Arginine supplementation has been shown to alleviate endothelial dysfunction and improve exercise performance through increasing nitric oxide production in patients with cardiopulmonary diseases. In addition, arginine supplementation could decrease accumulations of lactate and ammonia, metabolites involved in development of muscular fatigue. The aim of this study was to investigate the effect of short-term arginine supplementation on performance in intermittent anaerobic exercise and the underlying mechanism in well-trained male athletes. Ten elite male college judo athletes participated with a randomized crossover, placebo-controlled design. The subjects consumed 6 g/day arginine (ARG trial) or placebo (CON trial) for 3 days then performed an intermittent anaerobic exercise test on a cycle ergometer. Blood samples were collected before supplementation, before and during exercise and 0, 3, 6, 10, 30 and 60 min after exercise. ARG trial had significantly higher arginine concentrations than CON trial at the same time point before, during and after exercise. In both trials, nitrate and nitrite concentration was significantly higher during and 6 min after exercise comparing to the basal concentration. The increase in nitrate and nitrite concentration during exercise in both trials was parallel to the increase in plasma citrulline concentrations. There was no significant difference between the 2 trials in plasma nitrate and nitrite, lactate and ammonia concentrations and peak and average power in the exercise. The results of this study suggested that short-term arginine supplementation had no effect on nitric oxide production, lactate and ammonia metabolism and performance in intermittent anaerobic exercise in well-trained male athletes.
Int J Sport Nutr Exerc Metab. 2009 Aug;19(4):355-65.
Bescós R, Gonzalez-Haro C, Pujol P, Drobnic F, Alonso E, Santolaria ML, Ruiz O, Esteve M, Galilea P.
Effects of dietary L-arginine intake on cardiorespiratory and metabolic adaptation in athletes.
To assess the effect of diet enrichment with L-arginine or supplementation at high doses on physiological adaptation during exercise, 9 athletes followed 3 different diets, each over 3 consecutive days, with a wash-out period of 4 d between training sessions: control diet (CD), 5.5 +/- 0.3 g/d of L-arginine; Diet 1 (rich in L-arginine food), 9.0 +/- 1.1 g/d of L-arginine; and Diet 2 (the same as CD but including an oral supplement of 15 g/d), 20.5 +/- 0.3 g/d of L-arginine. Plasma nitrate levels of each participant were determined on the day after each treatment. Participants performed a submaximal treadmill test (initial speed 10-11 km/hr, work increments 1 km/hr every 4 min until 85-90% VO2max, and passive recovery periods of 2 min). Oxygen uptake and heart rate were monitored throughout the test. Blood lactate concentration ([La-]b) was determined at the end of each stage. Repeated-measures ANOVA and paired Student's t tests were used to compare the various physiological parameters between diets. The level of significance was set at p < .05. [La-]b showed a significant effect at the 5-min time point between CD and Diet 2 (CD 3.0 +/- 0.5 mM, Diet 2 2.5 +/- 0.5 mM, p = .03), but this tendency was not found at higher exercise intensities. No significant differences were observed in any of the cardiorespiratory or plasma nitrate levels. In conclusion, dietary L-arginine intake on the days preceding the test does not improve physiological parameters during exercise.
Atherosclerosis. 1995 Dec;118(2):223-31.
Wennmalm A, Edlund A, Granström EF, Wiklund O.
Acute supplementation with the nitric oxide precursor L-arginine does not improve cardiovascular performance in patients with hypercholesterolemia.
Endothelial dysfunction based on lack of nitric oxide (NO) may contribute to several settings of cardiovascular disorder. Chronic oral supplementation with the NO precursor L-arginine counteracts the development of aortic atherosclerosis in cholesterol-fed rabbits, and i.v. infusion of L-arginine may acutely improve endothelium-dependent coronary epicardial vasodilation in patients with hypercholesterolemia (HC). To clarify whether excess NO precursor may also improve general cardiovascular performance in HC, we measured working capacity indices of myocardial ischemia, and basal and post-occlusive forearm and skin blood flow in nine patients with elevated plasma cholesterol (9.1 +/- 0.2 mumol/l) following random double-blinded administration of L-arginine (16 g i.v.) or placebo. Infusion of L-arginine raised the plasma concentration of this amino acid from 85 +/- 12 to 2460 +/- 230 mumol/l but did not change the plasma level of the major NO metabolite nitrate. Maximal working capacity, indices of myocardial ischemia, and basal and post-occlusive blood flow in the skin or forearm did not differ between the treatments. The lack of positive effect of L-arginine compared to placebo indicates that excess NO precursor did not improve microvascular endothelial function in the patients, or alternatively, that the indices measured in the present study were not dependent on endothelial microvessel function. Thus, in patients with HC, deficiency of precursor for NO formation does not seem to impair either maximal exercise capacity myocardial perfusion during maximal exercise, or maximal vasodilator capacity in skeletal muscle or skin.
Circulation. 2007 Jul 10;116(2):188-95. Epub 2007 Jun 25.
Wilson AM, Harada R, Nair N, Balasubramanian N, Cooke JP.
L-arginine supplementation in peripheral arterial disease: no benefit and possible harm.
BACKGROUND: L-arginine is the precursor of endothelium-derived nitric oxide, an endogenous vasodilator. L-arginine supplementation improves vascular reactivity and functional capacity in peripheral arterial disease (PAD) in small, short-term studies. We aimed to determine the effects of long-term administration of L-arginine on vascular reactivity and functional capacity in patients with PAD. METHODS AND RESULTS: The Nitric Oxide in Peripheral Arterial Insufficiency (NO-PAIN) study was a randomized clinical trial of oral L-arginine (3 g/d) versus placebo for 6 months in 133 subjects with intermittent claudication due to PAD in a single-center setting. The primary end point was the change at 6 months in the absolute claudication distance as assessed by the Skinner-Gardner treadmill protocol. L-arginine supplementation significantly increased plasma L-arginine levels. However, measures of nitric oxide availability (including flow-mediated vasodilation, vascular compliance, plasma and urinary nitrogen oxides, and plasma citrulline formation) were reduced or not improved compared with placebo. Although absolute claudication distance improved in both L-arginine- and placebo-treated patients, the improvement in the L-arginine-treated group was significantly less than that in the placebo group (28.3% versus 11.5%; P=0.024). CONCLUSIONS: In patients with PAD, long-term administration of L-arginine does not increase nitric oxide synthesis or improve vascular reactivity. Furthermore, the expected placebo effect observed in studies of functional capacity was attenuated in the L-arginine-treated group. As opposed to its short-term administration, long-term administration of L-arginine is not useful in patients with intermittent claudication and PAD.
So to put it blunty, NO products containing L-Arginine are pretty much worthless according to these studies.
Although these studies do not show effects of exogenous L-Arginine on endogenous GH. I'm not stating GH is NOT raised and Arginine is totally worthless. As for NO production... Read above again.